(Total) Domination in Prisms

نویسندگان

  • Jernej Azarija
  • Michael A. Henning
  • Sandi Klavzar
چکیده

Using hypergraph transversals it is proved that γt(Qn+1) = 2γ(Qn), where γt(G) and γ(G) denote the total domination number and the domination number of G, respectively, and Qn is the n-dimensional hypercube. More generally, it is shown that if G is a bipartite graph, then γt(G K2) = 2γ(G). Further, we show that the bipartiteness condition is essential by constructing, for any k > 1, a (non-bipartite) graph G such that γt(G K2) = 2γ(G)− k. Along the way several domination-type identities for hypercubes are also obtained.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on domination and total domination in prisms

Recently, Azarija et al. considered the prism G K2 of a graph G and showed that γt(G K2) = 2γ(G) if G is bipartite, where γt(G) and γ(G) are the total domination number and the domination number of G. In this note, we give a simple proof and observe that there are similar results for other pairs of parameters. We also answer a question from that paper and show that for all graphs γt(G K2) ≥ 4 3...

متن کامل

Roman domination in complementary prisms

The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect matching between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V (G) → {0, 1, 2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) ofG is the mini...

متن کامل

Fractional domination in prisms

Mynhardt has conjectured that if G is a graph such that γ(G) = γ(πG) for all generalized prisms πG then G is edgeless. The fractional analogue of this conjecture is established and proved by showing that, if G is a graph with edges, then γf (G×K2) > γf (G).

متن کامل

Paired domination in prisms of graphs

The paired domination number γpr(G) of a graph G is the smallest cardinality of a dominating set S of G such that 〈S〉 has a perfect matching. The generalized prisms πG of G are the graphs obtained by joining the vertices of two disjoint copies of G by |V (G)| independent edges. We provide characterizations of the following three classes of graphs: γpr(πG) = 2γpr(G) for all πG; γpr(K2 G) = 2γpr(...

متن کامل

A characterization relating domination, semitotal domination and total Roman domination in trees

A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 24  شماره 

صفحات  -

تاریخ انتشار 2017